1 1001117		100	Bilai	ш	1001

Reg. No. :										agn
------------	--	--	--	--	--	--	--	--	--	-----

Question Paper Code: 40961

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Fifth Semester

Electronics and Communication Engineering EC 6501 – DIGITAL COMMUNICATION (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART – A

(10×2=20 Marks)

- 1. Define Band pass sampling.
- 2. In a PCM system, the output of the transmitting quantizer is digital. Then why is it further encoded?
- 3. What is meant by delta modulation systems?
- 4. Why Delta Modulation is superior to Differential Pulse Code Modulation?
- 5. What do the various autocorrelation coefficients represent in the power spectral density expression of a line code? Given the values of R10, R8, R50 and R200 and arrange them in the increasing order.
- 6. State Nyquist second and third criteria to realize zero ISI.
- 7. Draw PSK and QPSK waveforms of the bit stream 11110011.
- 8. Define non coherent detection schemes.
- 9. What is meant by syndrome of linear block code?
- 10. Write the various techniques/algorithms used in encoding and decoding of convolutional code.

PART – B

(5×13=65 Marks)

- 11. a) i) Derive the expression for signal to noise ratio of uniform quantizer. (7)
 - ii) Write a detailed note on Aliasing and Signal Reconstruction. (6)

(OR)

	b)	i)	A PCM system has a uniform quantizer followed by a v bit encoder. Show	
			that the rms signal to noise ratio is approximately given by $(1.8 + 6 \text{ U})$ dB, assuming a sinusoidal input.	(7)
		11)	Show that the signal to noise power ratio of a uniform quantizer is PCM system increases significantly with increase in number of bits per sample. Also determine the signal to quantization noise ratio of an audio signal $S(t) = 4 \sin(2\pi 500t)$ which is quantized using a 10 bit PCM.	(6)
12.	a)		xplain the construction features and working of Adaptive Delta Iodulation.	(13)
		-	(OR)	
	b)		lucidate a DPCM system. Derive the expression for slope overload noise of system.	(13)
13.	a)	W R2	That is the need for line shaping of Signals? Derive the PSD of a unipolar Z and NRZ, line code and compare their performance. (OR)	(13)
	b)		That is ISI and what are the various methods to remove ISI in communication stem. Also state and prove Nyquist first criterion for Zero ISI.	(13)
14.	a)	i)	Calculate the BER for a Binary Phase Shift Keying modulation from first principles.	(7)
		ii)	Derive the expression for bit error probability of a QPSK system. (OR)	(6)
	b)		Draw and explain the Quadrature Receiver structure for coherent QPSK. Draw the signal space diagram of a coherent QPSK modulation scheme and also find the probability of error if the carrier takes on one of four	(6)
			equally spaced values 0°, 90°, 180° and 270°.	(7)
15.	a)	i)	Find the $(7, 4)$ systematic and non-systematic cyclic code words of the message word 1101. Assume the generator polynomial as $1 + x^2 + x^3$.	(7)
		ii)	Develop the Code for an (n, k) linear cyclic code and explain its working. (OR)	(6)
	b)	i)	Explain Viterbi algorithm with an appropriate coder and a received input word of length 12. Assume a coder of constraint length 6 and rate efficiency ½.	. (7)
		ii)	What is the need of Digital Modulations in digital communication? Explain any one modulation scheme in detail.	(6)
			$PART - C (1 \times 15 = 15 Mar)$	ks)

16. a) Explain about Pseudo noise sequences with examples and mention their importance. (OR) I langis has provide an other belief the entity in

b) Explain in detail about digital hierarchy with examples.